

Lema

Linear Electro-Magnetic Actuator

Cubesat actuator

MECHANICAL PARAMETERS

single Z coil with solder pin connection for each coil.

•	Core cross-section	8	[mm²]	
•	Core length	70	[mm]	
•	Coil overall diameter	⁻ 10	[mm]	
•	Coil length	70	[mm]	
•	Coil cap	on den	on demand	
•	Core + coil weight	76	[g] eacł	
ELECTRICAL PARAMETERS				
•	RDC (±2,5%)	6,8	[Ω]	
•	Імах	200	[mA]	
•	Umax	1,36	[V]	
•	Wire diameter	0,3	[mm]	
•	Connection	solder pin / on demand		

The coil resistance depends on Power System Unit specification and battery capacity.

MAGNETIC PARAMETERS

• Hc [*]	<10 [A/m], or 12,5	[µT]

- B_s** 0,36 [T]
 Magnetic dipole moment D 0,39 [Am²]
- Linearized actuator function:

 $B_c = B_E + (98,6 I \pm H_c) [\mu T]$

or

$B_E = B_c + (14,5 / \pm H_c) [\mu T]$

Where B_c is the magnetic field intensity on the longitudinal coil axis in a 10 cm distance from the end face of the coil, B_E is external magnetic field in the same direction, I is the control current in A, U is the control voltage and H_c is the coil core coercivity.

LEMA series actuators were developed for attitude control of the 1U CubeSat skCUBE. Actuators are designed for the smallest possible coercivity H_c . Cores of the coils are made from modern amorphous materials with almost zero H_c and linear magnetization curve. Mechanical parameters can be adjusted for the maximal possible length with respect to the frame capacity of the CubeSat (for example as they were custom-made for skCUBE – the first Slovak satellite). The coil maximum control current is 200mA. The transfer curve of the actuator is linear in this range, which gives the actuator maximum energy efficiency.

* depends on the core shape

** defined for the end core faces, computed at 200mA